RE-EXAM EXAMINATION FEBRUARY 2024
Program: B.Tech Mechanical $\uparrow \cdot 4.1 \cdot T \mathrm{eh}(m)$ Sem Duration: 3 hrs. Course Code: PC-BTM515

Maximum Points: 100.
Course Name: Computer Aided Machine Drawing
Semester: V

Important Notes:

1. Question 1 is compulsory.
2. Attempt any three out of remaining five questions.
3. Create a new folder and rename it to <Reg. No._CAMD_RE-EXAM>
4. Create separate .dwg file for each question and save in the above created folder only. File name should be <Q1_Reg. no._RE-EXAM>.
5. Answers to free hand sketches should be drawn on given A4 answer sheet and submit is back.
6. Students to carry only Admit Card, Pen, Pencil, eraser and sharpener in Exam Hall. Use of scale and any geometric instrument is prohibited in Exam Hall.
7. At the end of exam, your folder with autocad and pdf files will be uploaded by the authorized person. Before leaving the exam seat, student have to confirm that his/her folder is uploaded by the authorized person.
8. Assume suitable data wherever only if necessary.
9. Save your Work in AutoCad Regularly.

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
RE-EXAM EXAMINATION FEBRUARY 2024

Q. 2	A vertical square Prism, base 50 mm side and axis 100 mm is resting on its base on the H.P. with all sides of base equally inclined to V.P. A horizontal cylinder, diameter 40 mm , having its axis parallel to both the V.P. and H.P. penetrates the prism. The axis of the solids intersects each other at right angle and cylinder axis is 50 mm above the prism base. a) Create 3 d models of the prism and cylinder. b) Create a copy of 3d models of the pyramid- cylinder and assemble them as given in problem. c) plot the projections of the assembly in F.V., T.V., and S.V. showing curves of intersections in the given layout template.	06 04 07	01/-- 01 03 04	03	$\xrightarrow{\text { ¢ }}$
	d) Draw Free Hand Sketches of the following: 1. Square Nut. 2. Hexagonal Bolt	$\begin{aligned} & 04 \\ & 04 \end{aligned}$	$\begin{aligned} & \hline 021 \\ & 02 \\ & \hline \end{aligned}$	01	$\overline{\mathrm{J}}$
Q. 3	Given in the figure is the Details of Protected Flange Coupling. Complete the following tasks. a) Create the Parts drawing in 2d space. b) Make one copy of each part and assemble the parts at their functional positions where u can see Sectional Front View and Side View of Assembly in 2d. c) Create a Bill of Material and plot a pdf file of the assembly within given template layout.	07 08 05	04/- 01 03 04	03	$\stackrel{\text { N }}{\sim}$
	d) Draw Free Hand Sketches of the following: 1. Gib Headed Key	05	$\begin{aligned} & \hline 04 / \\ & 02 \end{aligned}$	01	$\stackrel{7}{\square}$

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Murshi Nagas, Andlueri (W) Mumbai-400058
RE-EXAM EXAMINATION FEBRUARY 2024

Q. 4	Given in the figure is the Details of V-Belt Pulley. Complete the following tasks. a) Create the part model of all parts in $\mathbf{3 d}$ space. b) Make one copy of each part and assemble the parts at their functional positions. Plot Sectional Front View and Side View of Assembly in 2d layout with template. c) Create a Bill of Material and plot a pdf file of the assembly.	$\begin{aligned} & 8 \\ & 6 \end{aligned}$	$\begin{array}{\|c\|} \hline 05 /-- \\ 01 \\ 03 \\ 04 \end{array}$	03	$\stackrel{\text { Y }}{\text { N }}$
	d) Calculate the limits for $035 \mathrm{H7}, \mathrm{~g} 6$	5	$\begin{aligned} & \hline 02 / \\ & 02 \end{aligned}$	01	$\vec{\sim}$
Q. 5	Given in the figure is the Expansion Valve Assembly. a) Plot the $\mathbf{2 d}$ detail drawing for: Body: i) Sectional Front View ii) Side View b) Create the 3d part model of Gland Bush. c) Plot the Sectional Front View of 3d model of Gland Bush in 2d layout.	$\begin{aligned} & 7 \\ & 7 \\ & 6 \\ & 5 \end{aligned}$	$\begin{gathered} 06 /-- \\ 01 \\ 01 \\ 03 \\ 04 \end{gathered}$	03	$\frac{\mathrm{Y}}{\square}$
Q. 6	Given in the figure is the Drill Jig Assembly. a) Create 3d part model of Base Plate b) Plot the Sectional Front View and Top View of 3d model in 2d layout with given template. c) Create a 3d model for Jig Plate.	$\begin{gathered} 08 \\ 10 \\ 07 \end{gathered}$	$\begin{gathered} \hline 07 /-- \\ 03 \\ 04 \\ 03 \end{gathered}$	03	華

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andhcri (W) Mumbai 400058

RE-EXAM EXAMINATION FEBRUARY 2024

Q.1. Sleeve and Cotter Joint

Q.3. Protected Flange Coupling

RE-EXAM EXAMINATION FEBRUARY 2024

Q.4. V-Belt Pulley

RE-EXAM EXAMINATION FEBRUARY 2024

Q.5. Exapnsion Joint
(Government Aided Autonomous Institute)
Munbhi Nagar, Audluri (M) Munbai - 400038
RE-EXAM EXAMINATION FEBRUARY 2024

Q.6. Drill Jig Assembly

Page 7 of 8

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Numghi Nagni, Andherf (W) Mumhai - 4000.58

RE-EXAM EXAMINATION FEBRUARY 2024

Limits, Tolerance Tables

Table 1 Recommended diameter steps upto 500 mm (13 steps)

Over	-	3	6	10	18	30	50	80	120	180	250	315	400
Upto	3	6	10	18	30	50	80	120	180	250	315	400	500

Table 2 Equations to calculate fundamental deviation of shaft size up to 500 mm ($\mathrm{D}=$ Geometrical mean dia. in mm)

Symbol	Fundamental deviation in microns	Symbol	Fundamental deviation in microns
d	$-16 D^{0.44}$	js	$\pm(I T / 2)$
e	$-11 D^{0.41}$	k 4 to k 7	$+0.63 D^{1 / 2}$
f	$-5.5 D^{0.41}$	m	$+(\mathrm{IT} 7-\mathrm{IT} 6)$
g	$-2.5 D^{0.34}$	n	$+5 D^{0.34}$
h	0	p	$+(\mathrm{IT7}+0$ to 5$)$

Table 3 Fundamental Tolerance for IT grades in terms of i.

IT Grade	IT5	IT6	IT7	IT8	IT9	IT10	IT11	IT12	IT13	IT14	IT15	IT16
Tolerance in Microns	7 i	10 i	16 i	25 i	40 i	64 i	100 i	160 i	250 i	400 i	640 i	1000 i

Maximum Points: 100.
Semester: V

Important Notes:

1. Question 1 is compulsory.
2. Attempt any three out of remaining five questions.
3. Create a new folder and rename it to <Reg. No._CAMD_ENDSEM>
4. Create separate .dwg file for each question and save in the above created folder only. File name should be <Q1_Reg. no._Endsem $>$.
5. Answers to free hand sketches should be drawn on given A4 answer sheet and submit is back.
6. Students to carry only Admit Card, Pen, Pencil, eraser and sharpener in Exam Hall. Use of scale and any geometric instrument is prohibited in Exam Hall.
7. At the end of exam, your folder with autocad and pdf files will be uploaded by the authorized person. Before leaving the exam seat, student have to confirm that his/her folder is uploaded by the authorized person.
8 Assume suitable data wherever only if necessary.
8. Save your Work in AutoCad Regularly.

ENDSEM EXAMINATION DECEMBER 2023

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
ENDSEM EXAMINATION DECEMBER 2023

Q. 3	Given in the figure is the Details of Standard Flange Coupling. Complete the following tasks. a) Create the Part drawing in $\mathbf{2 d}$ space. b) Make one copy of each part and assemble the parts at their functional positions where u can see Sectional Front View and Side View of Assembly in 2d. c) Create a Bill of Material and plot a pdf file of the assembly with given template layout.	07 08 05	04/- 01 03 04	03	$\stackrel{Y}{5}$
	d) Draw Free Hand Sketches of the following: 1. Wood-ruff Key	05	$\begin{aligned} & \hline 04 / \\ & 02 \end{aligned}$	01	-
Q. 4	Given in the figure is the Details of V-Belt Pulley. Complete the following tasks. a) Create the part model of all parts in 3d space. b) Make one copy of each part and assemble the parts at their functional positions. Plot Sectional Front View and Side View of Assembly in 2 d layout with template. c) Create a Bill of Material and plot a pdf file of the assembly.	10 5	05/- 01 03 04	03	$\stackrel{7}{5}$
	d) Calculate the limits for $025 \mathrm{H7} 7 \mathrm{f7}$	5	$\begin{aligned} & \hline 02 / \\ & 02 \end{aligned}$	01	$\underset{\sim}{\square}$
Q. 5 Given in the figure is the Expansion Valve Assembly. a) Plot the 2 d detail drawing for: Gland: i) Sectional Front View ii) Side View b) Create the 3d part model of Neck Bush. c) Plot the Sectional Front View of 3d model of Neck Bush in 2 d layout.					
		8	$\begin{aligned} & \hline 06 /-- \\ & 01 \\ & 01 \\ & 03 \\ & 04 \end{aligned}$	03	$\stackrel{\text { \% }}{\substack{\text { in }}}$

ENDSEM EXAMINATION DECEMBER 2023

Q. 6	Given in the figure is the Drill Jig Assembly. a) Create 3d part model of Jig Plate b) Plot the Sectional Front View and Top View of 3d model in 2d layout with given template. c) Create a 3d model for Base Plate.	08 10 07	$\begin{gathered} \hline 07 /-- \\ 03 \\ 04 \\ 03 \\ \hline \end{gathered}$		

Q.1. Knuckle Joint

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - $4000 \% 8$
ENDSEM EXAMINATION DECEMBER 2023

Q.3. Standard Flange Coupling

Side View
Q.4. V-Belt Pulley

ENDSEM EXAMINATION DECEMBER 2023

Q.5. Exapnsion Joint
(Government Aided Autonomous Institute)
Munshi Narar. Andheri (W) Mumbni timionx
ENDSEM EXAMINATION DECEMBER 2023

Q.7. Drill Jig Assembly

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

ENDSEM EXAMINATION DECEMBER 2023

Limits, Tolerance Tables

Table 1 Recommended diameter steps upto 500 mm (is steps)

Over	-	3	6	10	18	30	50	80	120	180	250	315
Una	3	6	10	18	30	50	80	120	180	250	315	400

Table 2 Equations to calculate fundamental deviation of shaft si/e up to $500 \mathrm{~mm}(\mathrm{D}=$ Geometrical mean dia in mm)

Sy mious	Fundamentai deviation in microns	Symbol	Fundamental deviation in microns
d	-160^{0+4}	js	$\pm(1 \mathrm{~T} / 2)$
e	-110^{-42}	k 4 to k 7	$+6.630^{1 / 2}$
f	$-5.5 D^{0.41}$	m	$+(117-116)$
g	$-2.5 D^{0.34}$	n	$+5 D^{0.34}$
$\frac{\square}{\mathrm{h}}$	- 0	p	$+(\mathrm{TT} 7+0$ to 5$)$

Table 3 Fundamental Tolerance for IT grades in terms of i.

| IT Grade | IT5 | IT6 | IT7 | IT8 | IT9 | IT10 | IT11 | IT12 | IT13 | IT14 | IT15 | IT16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Tolerance
 in Microns | 7 i | 10 i | 16 i | 25 i | 40 i | 64 i | 100 i | 160 i | 250 i | 400 i | 640 i | 1000 i |

ENDSEM EXAMINATION DECEMBER 2023

Program: B. Tech Mechanical Course Code: PC-BTM515

Course Name: Computer Aided Machine Drawing

Maximum Points: $\mathbf{1 0 0}$,
Semester: V

Important Notes:

1. Question 1 is compulsory.
2. Attempt any three out of remaining five questions.
3. Create a new folder and rename it to <Reg. No._CAMD_ENDSEM>
4. Create separate .dwg file for each question and save in the above created folder only. File name should be <Q1_Reg. no, Endsem>.
5 Answers to free hand sketches should be drawn on given A4 answer sheet and submit is back.
6 Students to carry only Admit Card, Pen, Pencil, eraser and sharpener in Exarn Hall Use of scale and any geometric instrument is prohibited in Exam Hall.
5. At the end of exam, your folder with autocad and pdf files will be uploaded by the authorized person. Before leaving the exam seat, student have to confirm that his her folder is uploaded by the authorized person.
6. Assume suitable data wherever only if necessary.
7. Save your Work in AutoCad Regularly.

ENDSEM EXAMINATION DECEMBER 2023

Set B

Q.I	Given in the figure 1 is the details of Knuckle Joint. Complete the following tasks: a) Draw detail drawing of each part in 2d. b) Make one copy of each part and assemble the parts at their functional positions where u can see Top View of Assembly in 2d. c) Create a Bill of Material and plot a pdf file of the assembly with given template layout.
	d) Draw Free Hand Sketches of the following: 1 Unified Thread. ii. Square Thread

Q.2 A vertical square pyramid, base 80 mm side and axis 120 mm is resting on its base on the H.P. with all sides of base equally inclined to V.P. A horizontal prism, side 40 mm , with all sides of base equally inclined to V.P. and having its axis parallel to both the V P. and H.P. penetrates the pyramid. The axis of the solids intersects each other at right angle and prism axis is 40 mm above the pyramid base.
a) Create 3 d models of the pyramid and prism.
b) Create a copy of 3 d models of the py ramid- prism and assemble them as given in problem.
c) plot the projections of the assembly in F.V., T.V., and S.V showing lines of intersections in the given layout template.
d) Draw Free Hand Sketches of the following:

1. Wing Nut.
2. T-Bolt

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheni (W) Munbri - 100058

ENDSEM EXAMINATION DECEMBER 2023

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Q. 3 Given in the figure is the Details of Protected Flange Coupling. Complete the following tasks. \\
a) Create the Part drawing in \(\mathbf{2 d}\) space. \\
b) Make one copy of each part and assemble the parts at their functional positions where \(u\) can see Sectional Front View and Side View of Assembly in 2d. \\
c) Create a Bill of Material and plot a pdf file of the assembly with given template layout.
\end{tabular} \& 07
08

05 \& | 04/- |
| :--- |
| 01 |
| 03 |
| 04 | \& 03 \& $\xrightarrow{4}$

\hline d) Draw Free Hand Sketches of the following: 1 Gib Headed Key \& 05 \& $$
\begin{aligned}
& 04 \\
& 02
\end{aligned}
$$ \& 01 \& \square

\hline | Q. 4 Given in the figure is the Details of V-Belt Pulley. Complete the following tasks. |
| :--- |
| a) Create the part model of all parts in $\mathbf{3 d}$ space. |
| b) Make one copy of each part and assemble the parts at their functional positions. Plot Sectional Front View and Side View of Assembly in 2d lavout with template. |
| c) Create a Bill of Material and plot a pdf file of the assembly. | \& 10

5

5 \& $$
\begin{aligned}
& 05!- \\
& 01 \\
& 03 \\
& 04
\end{aligned}
$$ \& 03 \& $\frac{\square}{\square}$

\hline d) Calculate the limits for $935 \mathrm{H} 7, \mathrm{f} 7$ \& 5 \& $$
\begin{gathered}
02 / \\
02
\end{gathered}
$$ \& 01 \& 干

\hline 1 \& \& \& \&

\hline | Q. 5 Given in the figure is the Expansion Valve Assembly. |
| :--- |
| a) Plot the $\mathbf{2 d}$ detail drawing for: |
| Gland: i) Front View |
| ii) Side View |
| b) Create the 3d part model of Gland Bush. |
| 2 Plot the Sectional Front View of 3d model of Gland Bush in 2d layout. | \& \[

$$
\begin{aligned}
& 5 \\
& 7 \\
& 8 \\
& 5
\end{aligned}
$$

\] \& | 06/- |
| :--- |
| 01 |
| 01 |
| 03 |
| 04 | \& 03 \& $\frac{5}{n}$

\hline
\end{tabular}

ENDSEM EXAMINATION DECEMBER 2023

Q. 6	Given in the figure is the Drill Jig Assembly. a) Create 3d part model of Latch washer b) Plot the Front View and Top View of 3d model in 2d Layout with given template. c) Create a 3d model for Stem.	$\begin{aligned} & 08 \\ & 10 \\ & 07 \end{aligned}$	$\begin{gathered} 07 /- \\ 03 \\ 04 \\ \\ 03 \end{gathered}$	03	$\frac{\mathrm{Y}}{\square}$

Q.1. Knuckle Joint

ENDSEM EXAMINATION DECEMBER 2023

Q.3. Protected Type Fiange Coupling

Q.4. V-Belt Pulley
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
ENDSEM EXAMINATION DECEMBER 2023

Q.5. Exapnsion loint

Page 6 of 8

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

ENDSEM EXAMINATION DECEMBER 2023

Q.7. Drill Jig Assembly

Page 7 of 8

SARDAR PATEL COLLEGE OF ENGINEERING
 (Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

ENDSEM EXAMINATION DECEMBER 2023

Limits, Tolerance Tables

Table 1 Recommended diameter steps upto 500 mm (13 steps)

Over	3	6	10	18	30	50	80	120	180	250	315
Upto	3	6	10	18	30	50	80	120	180	250	315

Table 2 Equations to calculate fundamental deviation of shaft size up to 500 mm ($\mathrm{D}=$
Germetrical mean dia in mm

$S_{y} \mathrm{~m}: 0 \mathrm{~d}$	-uncuarnencai detiation in microan	Symitim	Fundameneal devation in microns
d	$-160^{0.4+}$	js	$\pm(1 T / 2)$
e	$-11 D^{0.4}$	k 4 to k7	$+0.63 D^{1 / 2}$
f	$-5.5 D^{0.41}$	m	$+($ IT7-IT6)
g	$-2.5 D^{0.34}$	n	$+5 D^{0.34}$
h	0	p	$+(1 T 7+0$ to 5$)$

Table 3 Fundamental Tolerance for IT grades in terms of i.

| IT Grade | IT5 | IT6 | IT7 | IT8 | IT9 | IT10 | IT!! | IT12 | IT13 | IT14 | IT15 | IT16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Tolerance
 in Microns | 7 i | 10 i | 16 i | 25 i | 40 i | 64 i | 100 i | 160 i | 250 i | 400 i | 640 i | 1000 i |

Bharatiya Vidya Bhavan's
SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

PREVIOUS SEMESTER EXAMINATION FEBRUARY 2024

Program: Third year B. Tech. Mechanical
Course Code: PC-BTM512
Course Name: Dynamics of Machinery

Notes: 1. Attempt any 5 questions

2. Each questions carry equal marks
3. Assume suitable data wherever necessary and justify the same

Duration: 03 Hrs.
Maximum Points: $\mathbf{1 0 0}$
Semester: V

\begin{tabular}{|c|c|c|c|c|c|}
\hline Q.No. \& Questions \& Points \& CO \& BL \& Module No. \\
\hline 1 \& \begin{tabular}{l}
a) Explain Prony brake dynamometer \\
b) The turning moment diagram of a four stroke engine may be assumed for the sake of simplicity to be represented by four triangles in each stroke. The areas of these triangles are as follows: Suction stroke \(=5 \times 10^{-5} \mathrm{~m}^{2}\); Compression stroke \(=21 \times 10^{-5} \mathrm{~m}^{2}\); Expansion stroke \(=85 \times 10^{-5} \mathrm{~m}^{2}\); Exhaust stroke \(=8 \times 10^{-5} \mathrm{~m}^{2}\). All the areas excepting expression stroke are negative. Each \(\mathrm{m}^{2}\) of area represents \(14 \mathrm{MN}-\mathrm{m}\) of work. Assuming the resisting torque to be constant, determine the moment of inertia of the flywheel to keep the speed between 98 r.p.m. and 102 r.p.m. Also find the size of a rim-type flywheel based on the minimum material criterion, given that density of flywheel material is \(8150 \mathrm{~kg} / \mathrm{m}^{3}\); the allowable tensile stress of the flywheel material is 7.5 MPa . The rim cross-section is rectangular, one side being four times the length of the other.
\end{tabular} \& 05 \& 1 \& 3 \& 1 \\
\hline 2 \& \begin{tabular}{l}
a) Derive the expression for effect of gyroscopic couple on stability of an four wheeler vehicle. \\
b) The turbine rotor of a ship has a mass of 3500 kg . It has a radius of gyration of 0.45 m and a speed of \(3000 \mathrm{r} . \mathrm{p} . \mathrm{m}\). clockwise when looking from stern. Determine the gyroscopic couple and its effect upon the ship: \\
1. when the ship is steering to the left on a curve of 100 m radius at a speed of \(36 \mathrm{~km} / \mathrm{h}\). \\
2. when the ship is pitching in a simple harmonic motion, the bow falling with its maximum velocity. The period of pitching is 40 seconds and the total angular displacement between the two extreme positions of pitching is 12 degrees.
\end{tabular} \& 12

08 \& 1 \& 1,2 \& 2010

\hline
\end{tabular}

Bharatiya Vidya Bhavan's

PREVIOUS SEMESTER EXAMINATION FEBRUARY 2024

3	a) Define the following terms: i. Sensitiveness ii. Stability iii. Isochronous iv. Hunting b) The following particulars refer to a Proell governor with open arms : Length of all arms $=200 \mathrm{~mm}$, distance of pivot of arms from the axis of rotation $=40 \mathrm{~mm}$, length of extension of lower arms to which the ball is attached - 100 mm , mass of each ball -6 kg and mass of the central load $=150 \mathrm{~kg}$. If the radius of rotation of the balls is 180 mm when the arms are inclined at 40° to the axis of rotation, find $: 1$. the equilibrium speed for the above configuration, 2. the coefficient of insensitiveness if the friction of the governor mechanism is equivalent to a force of 20 N at the sleeve, and 3 . the range of speed between which the governor is inoperative.	08 12	1	3	3
4	a) An epicyclic train of gears is arranged as shown in Figure. How many revolutions does the arm, to which the pinions B and C are attached, make: 1. when A makes one revolution clockwise and D makes half a revolution anticlockwise, and 2. when A makes one revolution clockwise and D is stationary? The number of teeth on the gears A and D are 40 and 90 respectively.	15	1	3	(
5	a) Define the following: (i) Damped Vibrations (ii) Forced Vibrations (iii) Resonance (iv) Transverse Vibrations b) Derive the expression for free longitudinal vibrations by equilibrium method.	08 12	3	2,3	5
6	a) Explain following systems: i. Underdamped ii. Critically damped	12	4	2,3	6

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
PREVIOUS SEMESTER EXAMINATION FEBRUARY 2024

	iii.Overdamped b) Determine the equivalent spring stiffness and the natural frequency of the following vibrating system when the i. mass is suspended to a spring ii. mass is suspended at the bottom of two springs in series	08		
	a)A rotating shaft carries four masses A, B, C and D which are radially attached to it. The mass centres are 30 mm, 38 mm, 40 mm and 35 mm respectively from the axis of rotation. The masses A, C and D are $7.5 \mathrm{~kg}, 5 \mathrm{~kg}$ and 4 kg respectively. The axial distances between the planes of rotation of A and B is 400 mm and between B and C is 500 mm. The masses A and C are at right angles to each other. Find for a complete balance, 1. the angles between the masses B and D from mass A, 2. the axial distance between the planes of rotation of C and D, 3. the magnitude of mass B. b)	12		
Explain balancing of four cylinder four stroke in line engine.	08	2	3	7

END SEMESTER EXAMINATION DECEMBER 2023

Program: Third year B. Tech. Mechanical
Course Code: PC-BTM512
Course Name: Dynamics of Machinery
Notes: 1. Attempt any 5 questions
2. Each questions carry equal marks
3. Assume suitable data wherever necessary and justify the same

END SEMESTER EXAMINATION DECEMBER 2023

	length and pivoted on the axis of rotation. When the radius of rotation of the balls is 120 mm . The sleeve begins to rise up 160 mm at the maximum speed. Determine the (i) Range of speed (ii) Lift of the sleeve (iii) Effort of the governor (iv) Power of the governor What will be the effect of friction at the sleeve if it is equivalent to 8 N ?	14			
4	a) Define the following terms: I Pressure Line II. Path of Contact III. Arc of Recess b) An epicyclic gear as shown in figure, the compound wheels A and B as well as internal wheels C and D rotate independently abour the axis O. The wheels E and F rotate on the pins fixed to the $\operatorname{arm} \mathrm{A}$. All the wheels are of the same module. the number of teeth on the whectio die $T_{1}=52, T_{3}=56 . T_{1}=T_{+}=36$ Determine the speed of C if (i) The wheel D fixed and arm a rotates at 200 rpm ctockwise (ii) The wheet D rotates at 200 rpm counterclockwise and the arm A rotates at 20 rpm counter clockwise.	06	1	3	4
5	a) Define the following: (i) Damped Vibrations (ii) Forced Vibrations (iii) Resonance (iv) Transverse Vibrations b) Derive the expression for free longitudinal vibrations by equilibrium method.	08 12	3	2,3	5

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai-400058
END SEMESTER EXAMINATION DECEMBER 2023

6	a) Differentiate between Viscous and Coulomb damping. b) A vibratory system consist of a mass of 50 kg , a spring with a stiffness of $30 \mathrm{kN} / \mathrm{m}$ and a damper. The damping provided is only 20% of the critical value. Determine the (i) Damping factor (ii) critical damping coefficient (iii) natural frequency of damped vibrations (iv) Logarithmic decrement (v) Ratio of two consecutive amplitudes.	05 15	4	2,3	6
7	a) Four masses A, B, C and D are completely balanced. Masses C and D make angles of 90° and 195° respectively with that of mass B in the counterclockwise direction. The rotating masses have the following properties: $\begin{array}{ll} \mathrm{mb}=25 \mathrm{~kg} & \mathrm{ra}=150 \mathrm{~mm} \\ \mathrm{mc}=40 \mathrm{~kg} & \mathrm{rb}=200 \mathrm{~mm} \\ \mathrm{md}=35 \mathrm{~kg} & \mathrm{rc}=100 \mathrm{~mm} \\ & \mathrm{rd}=180 \mathrm{~mm} \end{array}$ Planes B and C are 250 apart. Determine the (i) Mass A and its angular position with that of mass B (ii) Positions of all the planes relative to plane of mass A b) Explain balancing of four cylinder four stroke in line engine.	12	2	3	(

Maximum Points: 100
Semester: V

Notes:

1. Question number ONE is compulsory and solve any FOUR questions out of remaining SIX.
2. Steam table and Mollie diagram is allowed to use.
3. All sub questions to be grouped together.
4. Assume suitable data wherever necessary and justify the same.

(Government Aided Autonomous institute)
Manshi Nagar, Andheri (W) Mlimbai - 400058

End Semester Examinations - December 2023

4(a)	Draw neat sketch of evaporative condenser and explain its working.	10	3	1	4
(b)	The following data refer to a single stage impulse turbine: Isentropic nozzle enthalpy drop $=210 \mathrm{~kJ} / \mathrm{kg}$, Nozzle efficiency - 90% Nozzle angle $=25^{\circ} \mathrm{C}$ Ratio of blade speed to whirl component of steam $=0.5$ Blade velocity coefficient $=0.9$ The velocity of steam entering the nozzle $=30 \mathrm{~m} / \mathrm{s}$ Estimate the followings: (i) The blade angles at inlet and outlet if the steam enters the blades without shock and leaves the blades in an axial direction. (ii) Blade efficiency (iii) Power developed (iv) Axial thrust if the steam flow rate is $10 \mathrm{~kg} / \mathrm{sec}$.	10	4	3	5
5(a)	Draw neat sketch of Cochran boiler and explain its working in detail.	10	3	2	3
(b)	Derive an equation for maximum efficiency of impulse turbine assuming that blades are symmetrical i.e. $\left(\beta_{1}=\beta_{2}\right)$ and no friction in the fluid passage, which is given by: $\left(\eta_{b}\right)_{\max }=\cos ^{2} \alpha_{1}$	10	3	2	5
$6(\mathrm{a})$	Draw neat sketch of the fusible plug and economizer used in the steam generator and explain its function.	10	3	1	3
(b)	Draw schematic diagram and T-s diagram for methods which are used to improve the thermal efficiency of open cycle gas turbine given below. Also write equation of work input to compressor, work output by turbine, work available and thermal efficiency for each method. (i) Regeneration (ii) Intercooling and (iii) Reheating	10	3	1,2	6
7(a)	Explain the working of Pelton wheel turbine with neat sketch	10	3	1,2	7
(b)	In an open constant pressure gas turbine, air enters the compressor at 1.02 bar and $27^{\circ} \mathrm{C}$. The pressure of air after the compression is 4.08 bar . The isentropic efficiencies of compressor and turbine are 80% and 85% respectively. The A:F ratio used is $80: 1$. Find the I.P. and thermal efficiency of the cycle if the flow rate of air is $2.5 \mathrm{~kg} / \mathrm{sec}$. Take $C_{p}=1$ $\mathrm{kJ} / \mathrm{kg}$. K and $\gamma=1.4$ for air and gases. Take calorific value of fuel used $=$ $41720 \mathrm{~kJ} / \mathrm{kg}$.	10	4	1	6

SARDAR PATEL COLLEGE OF ENGINEERING

Re-Examination - February 2024

Program: T Y. B. Tech Mechanical Engineering Course Code: PC-BTM501
Course Name: Heat and Mass Transfer

Duration: $\mathbf{3}$ hours
Maximum Points: 100
Semester: V

1. Q. 1 is COMPULSORY. Solve any Four questions out of remaining Six.
2. Use of heat exchanger data and charts duly approved by the examiner is permitted.
3. Use of Reference Data for Properties of fluids, Convective heat transfer correlations and Heisler Charts duly approved by examiner is permitted.
4. Draw neat sketches wherever required.
5. Answers to theory questions should be specific and in legible handwriting.

Q.No.	Questions	-	8	$\underset{\sim}{*}$	翟
1	Solve any four (a) What is lumped capacity? What is meant by transient heat conduction? (b) Define the terms; Total emissive power, Monochromatic emissive power, Emissivity, Black body and Grey body (c) A surface of area 3 m 2 and at $200^{\circ} \mathrm{C}$ exchanges heat with another surface at $30^{\circ} \mathrm{C}$ by radiation. If value of factor due to the geometric location and emissivity is 0.60 , determine :(i)The rate of heat transfer (ii) The value of thermal resistance, and (iii) The equivalent convection coefficient. (d) Define the Coefficient of convective heat transfer with clearly stated formulae and it's nomenclature. (e) Define the terms mass density and mass fraction.	20	1,2	1,2	3,5,1,4,7
2(a)	A 240 mm steam main pipe which is 240 meters long, covered with 50 mm of high temperature insulation (k * $0.092 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$) and 40 mm of low temperature insulation $\left(\mathrm{k}=0.062 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\right)$. The inner and outer surface temperatures as measured are $390^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ respectively. Evaluate: (i) The total heat loss per hour (ii) The heat loss per m^{2} of pipe surface (iii) The total heat loss per m^{2} of outer surface, and (iv) The temperature between two layers of insulation.	10	1,2	3,4	2

Re-Examination - February 2024

	Neglect heat conduction through pipe material				
2(b)	A cold storage room has walls made of 220 mm of brick on the outside, 90 mm of plastic foam, and finally 16 mm of wood on the inside. The outside and inside air temperatures are $25^{\circ} \mathrm{C}$ and $-10^{\circ} \mathrm{C}$ respectively. If the inside and outside heat transfer coefficients are respectively 30 and $11 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$, and the thermal conductivities of brick, foam and wood are 0.99, 0.022 and $0.17 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ respectively. Estimate: (i) The rate of heat removal by refrigeration if the total wall area is $85 \mathrm{~m}^{2}$. (ii) The temperature of the inside surface of the brick.	10	1,2	3,4	2
3(a)	A 120 mm thick large steel plate $\left(k=42.6 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, \alpha\right.$ $0.043 \mathrm{~m}^{2} / \mathrm{h}$), initially at $440^{\circ} \mathrm{C}$ is suddenly exposed on both sides to an environment with convective heat transfer coefficient $235 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ and temperature $50^{\circ} \mathrm{C}$. Determine the center line temperature, and temperature inside the plate 15 mm from the midplane after 4.3 minutes.	10	4	1,3	6
3(b)	Derive an expression for LMTD of counter flow heat exchanger with neat sketch of flow arrangement and temperature distribution along the length of heat exchanger.	10	2	1,2,3	6
4(a)	The flow rates of hot and cold water streams running through a parallel flow heat exchanger are $0.2 \mathrm{~kg} / \mathrm{s}$ respectively. The inlet temperature on the hot and cold sides are $75^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ respectively. The exit temperature of hot water is $45^{\circ} \mathrm{C}$. If the individual heat transfer coefficients on both side are $500 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$. Calculate the area of the heat exchanger.	10	4	3,5	7
4(b)	A counter-flow heat exchanger is employed to cool 0.55 $\mathrm{kg} / \mathrm{s}\left(\mathrm{c}_{\mathrm{p}}=2.45 \mathrm{~kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}\right)$ of oil from $115^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ by the use of water. The inlet and outlet temperatures of cooling water are $15^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$, respectively. The overall heat transfer coefficient is expected to be $1450 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$. Using NTU method, estimate the followings: (i) The mass flow rate of water, (ii) The effectiveness of the heat exchanger, (iii) The surface area required.	10	4	3,5	7

SARDAR PATEL COLLEGE OF ENGINEERING

Re-Examination - February 2024

5(a)	State: the following laws of radiation and Express: Mathematical equation/s for each of them. i) StefanBoltzmann Law ii) Kirchoff's Law iii) Wien's Displacement Law iv) Lambert's Cosine Law	10	3	1,2	5
5(b)	For an industrial furnace in the form of a black body emitting radiations at $2500^{\circ} \mathrm{C}$, Evaluate: Monochromatic emissive power at $1.2 \mu \mathrm{~m}$. ii) Wavelength at which emission is maximum iii) Maximum emissive power iv) Total emissive power v) Total emissive power of the furnace if it is assumed as a real surface with emissivity equal to 0.8	10	3	5	5
6(a)	Give formulation of Stanton Number and give nomenclature of each property in it.	04	01	01	04
6(b)	A hot plate height 1 m and wide 0.5 m at $90^{\circ} \mathrm{C}$ is kept vertically in still air at $30^{\circ} \mathrm{C}$. Find: (i) Heat transfer coefficient. (ii) Rate of cooling for one side of the plate. Select the thermal properties from the given property table. $\begin{aligned} & \mathrm{Nu}_{i}=0.59(\mathrm{Gr} \operatorname{Pr})^{\prime 2} \text { for } 10^{\circ}<\mathrm{Gr} . \operatorname{Pr}<10^{\circ} \\ & N \mathrm{u}_{1}=0.10(\mathrm{Gr} \operatorname{Pr})^{1,3} \text { for } 10^{\circ}<\mathrm{Gr} \operatorname{Pr}<10^{12} \end{aligned}$	10	04	03	04
6(c)	Show and explain the hydrodynamic and thermal boundary layer formation over a flat plate.	06	04	03	04
7(a)	Air at $25^{\circ} \mathrm{C}$ is flowing over a flat plate at a velocity of 5 m's. if the płate is 300 mm wide and at $65^{\circ} \mathrm{C}$, Calculate the following: (i) Bulk Mean Temperature (T_{i}), (ii) Boundary layer thickness (δ) (iii) Thickness of thermal boundary layer ($\delta_{\text {th }}$) (iv) Local convective heat transfer coefficient at x $=150 \mathrm{~mm},\left(\mathrm{~h}_{\mathrm{x}}\right)$ (v) Rate of Convective heat transfer by plate, $Q_{\text {conv }}$ Select appropriate correlation: $\mathrm{Nu}_{\mathrm{x}}=0.332(\mathrm{Re})^{1 / 2} *(\mathrm{Pr})^{1 / 3}$ for laminar flow $\overline{N u}=0.332(\mathrm{Re})^{1 / 2} *(\mathrm{Pr})^{1 / 3}$ for laminar flow $N u_{x}=0.036\left[\left(\mathrm{Re}_{x}\right)^{0.8}-850\right] *(\operatorname{Pr})^{1 / 3}-$ Turbulent Flow	10	04	4	04

SARDAR PATEL COLLEGE OF ENGINEERING

Re-Examination - February 2024

	Hydrogen gas is maintained at pressures of 2.4 bar and I bar on opposite sides of a plastic membrane 0.3 mm thick. The binary diffusion coefficient of hydrogen in the plastic is $8.6 \times 10^{-8} \mathrm{~m}^{2} / \mathrm{s}$ and solubility of hydrogen in the membrane is 0.00145 kg -mole $/ \mathrm{m}^{3}$-bar. Calculate under uniform temperature conditions of $24^{\circ} \mathrm{C}$, the following: Molar Concentrations of hydrogen at opposite faces of membrane, Mass diffusion flux of hydrogen through the membrane. Mass fraction of each species. Molar fraction of each species.$\quad 10$	04	03	07

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester Exam - December 2023 Examinations

Program: TY. B. Tech Mechanical Engineering

Course Code: PC-BTM501
Course Name: Heat and Mass Transfer

Duration: 3 hours
Maximum Points: 100
Semester: V

Important Instructions:

1. Q. 1 is compulsory.

2 Solve any four questions out of remaining six.
3. Use of Reference Data for Properties of fluids, Convective heat transfer correlations Heisler Charts and heat exchanger data charts duly approved by examiner is permitted.
4. Draw neat sketches wherever necessary.
5. Answers to theory questions should be specific and in legible handwriting.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Q.No. \& Questions \& Points \& CO \& BL \& Module No. \\
\hline 1 \& \begin{tabular}{l}
Solve any four of the followings: (5 marks each) \\
(a) What is LMTD correction factor? Why is a counter flow heat exchanger more effective than a parallel flow heat exchanger? How does fouling factor affect the performance of a heat exchanger? \\
(b) A surface of area \(3 \mathrm{~m}^{2}\) and at \(200^{\circ} \mathrm{C}\) exchanges heat with another surface at \(30^{\circ} \mathrm{C}\) by radiation. If value of factor due to the geometric location and emissivity is 0.60 , determine (i) The rate of heat transfer (ii) The value of thermal resistance, and (iii) The equivalent convection coefficient. \\
(c) What is a black body? How does it differ from a gray body? \\
(d) Differentiate between Forced and Natural Couvection? \\
(e) Define the terms mass concentration and mass fraction.
\end{tabular} \& 20 \& 3

1
1 \& 2
3

1

2 \& | 6 |
| :--- |
| 5 |
| 5 |
| 4 |
| 7 |

\hline
\end{tabular}

End Semester Exam - December 2023 Examinations

2(a)	The interior of a refrigerator having inside dimensions of $0.5 \mathrm{~m} \times 0.5 \mathrm{~m}$ base area and 1 m height is to be maintained at $6^{\circ} \mathrm{C}$. The walls of the refrigerator are constructed of two mild steel sheets 3 mm thick $\left(k=46.5 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\right)$ with 50 mm of glass wool insulation ($k=0.046 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$) between them. If the average heat transfer coefficients at the outer and inner surfaces are $11.6 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ and 14.5 $\mathrm{W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ respectively. Estimate the followings: The rate at which heat must be removed from the interior to maintain the specific temperature in the kitchen at $25^{\circ} \mathrm{C}$, and The temperature on the outer surface of the metal sheet.	10	4	1,2,3	2
2(b)	A 240 mm steam main pipe which is 210 meters long, covered with 50 mm of high temperature insulation $\left(k=0.092 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\right)$ and 40 mm of low temperature insulation ($\mathrm{k}-0.062 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$). The inner and outer surface temperatures as measured are $390^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ respectively. Evaluate: (i) The total heat loss per hour (ii) The heat loss per m^{2} of pipe surface (iii)The total heat loss per m^{2} of outer surface, and (iv) The temperature between two layers of insulation: Neglect heat conduction through pipe material.	10	4	1,2,3	2
3(a)	A 60 mm thick large steel plate $\left(\mathrm{k}-42.6 \mathrm{~W} / \mathrm{m}{ }^{\circ} \mathrm{C}, \alpha-\right.$ $0.043 \mathrm{~m}^{2} \mathrm{~h}$), initially at $440^{\circ} \mathrm{C}$ is suddenly exposed on both sides to an environment with convective heat transfer coefficient $235 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ and temperature $50^{\circ} \mathrm{C}$. Determine the center line temperature, and temperature inside the plate 15 mm from the midplane after 4.3 minutes.	10	4	1,2,3	3
3(b)	Derive an expression for LMTD of parallel flow heat exchanger.	10	4	1,2,3	6
4(a)	In a certain double pipe heat exchanger hot water flows at a rate of $5000 \mathrm{~kg} / \mathrm{h}$ and gets cooled from $95^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$. At the same time $50000 \mathrm{~kg} / \mathrm{h}$ of cooling water is at $30^{\circ} \mathrm{C}$ enters the beat exchanger. The flow conditions are such that overall heat transfer coefficient remains constant at $2270 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.	10	4	1,2,3	6

End Semester Exam - December 2023 Examinations

	Estimate: (ii) the heat transfer area required (iii) the effectiveness, assuming two streams are in parallel flow. Assume for both the streams $\mathrm{C}_{\mathrm{p}}=4.2 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.				
4(b)	Steam at atmospheric pressure enters the shell of a surface condenser in which the water flows through a bundle of tubes of diameter 25 mm at the rate of 0.05 kg / s. The inlet and outlet temperatures of water are $15^{\circ} \mathrm{C}$ and 70°, respectively. The condensation of steam takes place on the outside surface of the tube. If the overall heat transfer coefficient is $230 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$. Estimate the followings using NTU method. Take the latent heat of vaporization at $100^{\circ} \mathrm{C}=2257 \mathrm{~kJ} / \mathrm{kg}$. (i) The effectiveness of the heat exchanger, (ii) The length of the tube (iii) The rate of steam condensation.	10	4	1,2,3	6
5(a)	State: The following laws of radiation and Express: Mathematical equation/s for each of them. i) StefanBoltzmann Law ii) Kirchoff's Law iii) Wien's Displacement Law iv) Lambert's Cosine Law	10	3	1,2	5
5(b)	For an industrial furnace in the form of a black body emitting radiations at $3000^{\circ} \mathrm{C}$, Evaluate: i) Monochromatic emissive power at $1.2 \mu \mathrm{~m}$, ii) Wavelength at which emission is maximum, iii) Maximum emissive power, iv) Total emissive power, v) Intensity of normal radiation,	10	3	5	5
6(a)	Give formulation of Grashoff Number and give nomenclature of each property in it.	04	01	01	04
6(b)	A hot plate height 1 m and wide 0.5 m at $130^{\circ} \mathrm{C}$ is kept vertically in still air at $20^{\circ} \mathrm{C}$. Find: (i) Heat transfer coefficient. (ii) Rate of cooling if both sides of plate are considered. Select the thermal properties from the given property table. $\begin{aligned} & \mathrm{NuI}_{=}=0.59(\mathrm{Gr} . \mathrm{Pr})^{1 / 4} \text { for } 10^{4}<\mathrm{Gr} . \operatorname{Pr}<10^{9} \\ & \mathrm{Nu}_{\mathrm{L}}=0.10(\mathrm{Gr} . \mathrm{Pr})^{1 / 3} \text { for } 10^{9}<\mathrm{Gr} . \operatorname{Pr}<10^{12} . \end{aligned}$	10	04	03	04

End Semester Exam - December 2023 Examinations

6(c)	Show and explain the effects of Pr number on relation of hydrodynamic and thermal boundary layer.	06	04	03	04
7(a)	Air at I bar pressure and $20^{\circ} \mathrm{C}$ is flowing over a flat plate at a velocity of $3 \mathrm{~m} / \mathrm{s}$. if the plate is 280 mm wide and at $60^{\circ} \mathrm{C}$, Calculate the following: (i) Bulk Mean Temperature (T_{i}), (ii) Boundary layer thickness (δ) (iii) Thickness of thermal boundary layer ($\delta_{t b}$) (iv) Local convective heat transfer coefficient at \mathbf{x} $-200 \mathrm{~mm},\left(\mathrm{~h}_{\mathrm{x}}\right)$ (v) Rate of Convective heat transfer by plate, $\mathrm{Q}_{\text {conv }}$ Select appropriate correlation: $N u_{x}-0.332(\mathrm{Re})^{1 / 2} *(\mathrm{Pr})^{1 / 3}$ for laminar flow $\tilde{N u}=0.332(\mathrm{Re})^{1 / 2} *(\mathrm{Pr})^{1 / 3}$ for laminar flow $N u_{x}=0.036\left[\left(\mathrm{Rex}^{2}\right)^{0.8}-850\right] *(\mathrm{Pr})^{1 / 3}-$ Turbulent Flow	10	04	4	04
7(b)	Hydrogen gas is maintained at pressures of 2.4 bar and 1 bar on opposite sides of a plastic membrane 0.3 mm thick. The binary diffusion coefficient of hydrogen in the plastic is $8.6 \times 10^{-8} \mathrm{~m}^{2} / \mathrm{s}$ and solubility of hydrogen in the membrane is 0.00145 kg -mole $/ \mathrm{m}^{3}$-bar. Calculate under uniform temperature conditions of $24^{\circ} \mathrm{C}$, the following: (i) Molar Concentrations of hydrogen at opposite faces of membrane, (ii) Mass diffusion flux of hydrogen through the membrane.	10	04	03	07

948

TABLE A-9							
Properties of at at 1 atmpressure							
$\begin{aligned} & \text { Temp. } \\ & I, ~ \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Density } \\ & p . \mathrm{hg}_{\mathrm{l}} \mathrm{~m}^{3} \end{aligned}$	Specific Heat c_{7} Jikg K	Thermal Corductivity 4, W/m-K	Thermal Diffusivity a. $\mathrm{m}^{2} / \mathrm{s}$	Dynarnic. Viscosity μ, kgimes	Kinematic Viscosity ע $m m^{2 / 5}$	PrandtI Number Pr
$\begin{gathered} 150 \\ -100 . \\ -5 . \\ 41 \\ 40 \end{gathered}$	$\begin{aligned} & 2.866 \\ & 2.038 \\ & 1.582 \\ & 1.514 \\ & 1.451 \end{aligned}$	$\begin{array}{r} 983 \\ 966 \\ 999 \\ 1002 \\ 1004 \end{array}$	$\begin{aligned} & 0.01171 \\ & 0.01582 \\ & 0.01979 \\ & 0.02057 \\ & 0.02134 \end{aligned}$	$\begin{aligned} & 4.158 \times 10^{-6} \\ & 8.036 \times 10^{-6} \\ & 1.252 \times 10^{-5} \\ & 1.356 \times 10^{-5} \\ & 1.465 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 8.636 \times 10^{-6} \\ & 1.189 \times 10^{-6} \\ & 1.474 \times 10^{-6} \\ & 1.527 \times 10^{-5} \\ & 1.579 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 3.013 \times 10^{-6} \\ & 5.837 \times 10^{-6} \\ & 9.319 \times 10^{-6} \\ & 1.008 \times 10^{-1} \\ & 1.067 \times 10^{-3} \end{aligned}$	$\begin{aligned} & 0.7246 \\ & 0.7263 \\ & 0.7440 \\ & 0.7436 \\ & 0.7425 \end{aligned}$
$\begin{array}{r} -20 \\ 10 \\ 0 \\ 3 \\ 10 \end{array}$	$\begin{aligned} & 1.394 \\ & 1.341 \\ & 1.292 \\ & 1.269 \\ & 1216 \end{aligned}$	$\begin{aligned} & 1005 \\ & 1005 \\ & 1006 \\ & 1006 \\ & 1006 \end{aligned}$	$\begin{aligned} & 0.02211 \\ & 0.02288 \\ & 0.02364 \\ & 0.02401 \\ & 0.02439 \end{aligned}$	$\begin{aligned} & 1.578 \times 10^{-5} \\ & 1.690 \times 10^{-5} \\ & 1.8: 8 \times 10^{-5} \\ & 1.880 \times 10^{-5} \\ & 1.944 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 1.630 \times 10^{-5} \\ & 1.680 \times 10^{-5} \\ & 1.729 \times 10^{-5} \\ & 1.754 \times 10^{-5} \\ & 1.778 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 1.169 \times 10^{-5} \\ & 1.252 \times 10^{-3} \\ & 1.338 \times 10^{-1} \\ & 1.382 \times 10^{-5} \\ & 1.426 \times 10^{-3} \end{aligned}$	$\begin{array}{r} 0.7408 \\ 0.7387 \\ 0.7362 \\ 0.7350 \\ 0.7336 \end{array}$
$\begin{array}{r} 75 \\ 20 \\ 25 \end{array}$	$\begin{aligned} & 1.25 \\ & 1204 \\ & 1.184 \\ & 1.164 \\ & 2145 \end{aligned}$	$\begin{aligned} & 1007 \\ & 1007 \\ & 1007 \\ & 1007 \\ & \hline 107 \end{aligned}$	$\begin{aligned} & \mathbf{0 . 2 4 7 5} \\ & 0.02514 \\ & 0.02551 \\ & 0.02588 \\ & 0.02625 \end{aligned}$	$\begin{aligned} & 2.009 \times 10^{-} \\ & 2.074 \times 10^{-5} \\ & 2.141 \times 10^{-5} \\ & 2208 \times 10^{-5} \\ & 2.277 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 802 \times 10 \\ & 1.85 \times 10 \\ & 1.849 \times 10 \\ & .812 \times 10 \\ & 1.895 \times 10 \end{aligned}$	$\begin{aligned} & 1.4 / 0 \times 10^{\prime} \\ & 1.516 \times 10^{-5} \\ & 1.562 \times 10^{-3} \\ & 1.608 \times 10^{-3} \\ & 2.655 \times 10^{-} \end{aligned}$	$\begin{aligned} & 0.7323 \\ & 0.7309 \\ & 0.7296 \\ & 0.7282 \\ & 0.7268 \end{aligned}$
$\begin{aligned} & 40 \\ & 4 \\ & 60 \\ & 60 \\ & 70 \end{aligned}$	$\begin{aligned} & 1.18 \\ & 1.80 \\ & 1.092 \\ & 1.059 \\ & 1.028 \end{aligned}$	$\begin{aligned} & 1007 \\ & 100 \\ & 1007 \\ & 1007 \\ & 1007 \end{aligned}$	$\begin{aligned} & 0.02662 \\ & 0.02699 \\ & 0.02735 \\ & 0.02808 \\ & 0.02881 \end{aligned}$	$\begin{aligned} & 2346 \times 10^{-5} \\ & 4.416 \times 10^{-5} \\ & 2.487 \times 10^{-5} \\ & 2.632 \times 10^{-5} \\ & 2.780 \times 10^{-5} \end{aligned}$	$\begin{aligned} & .918=10 \\ & -94.10 \\ & 1.963 \times 10^{-} \\ & 2.008 \times 10^{-6} \\ & 2.052 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 170 \times 10 \\ & 750 \quad 10^{-} \\ & 1.798 \times 10^{-0} \\ & 1.896 \times 10^{-5} \\ & 1.995 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 0.7255 \\ & 0.7241 \\ & 0.7228 \\ & 0.7202 \\ & 0.7177 \end{aligned}$
190 140	$\begin{aligned} & 0.9718 \\ & 61192 \\ & 1.4092 \\ & 0.8542 \end{aligned}$	$\begin{gathered} 05 \\ 1008 \\ 1011 \\ 1013 \end{gathered}$	$\begin{array}{r} .0233 \\ 0.03024 \\ 4.03095 \\ 6.0235 \\ 0.03374 \end{array}$	$\begin{aligned} & 332 \\ & 3.086 \times 10^{-6} \\ & 3.243 \times 10^{-5} \\ & 3.565 \times 10^{-5} \\ & 3.898 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 2.139 \cdot 10^{-8} \\ & 0.18 \\ & 2.254 \times 10^{-6} \\ & 2.345 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 2.201 \times 10^{-3} \\ & 2.305 \times 20 \\ & 2.522 \times 10^{-} \\ & 2.745 \times 10^{-5} \end{aligned}$	$\begin{aligned} & \mathrm{v} 215 \mathrm{i} \\ & 0.7132 \\ & 2.151 \\ & 03923 \\ & 0.7141 \end{aligned}$
$\begin{array}{r} 180 \\ 300 \\ 2-4 \\ 20.0 \end{array}$	$\begin{array}{r} 0.7788 \\ 0.7459 \\ 6740 \\ 0.6158 \end{array}$	$\begin{aligned} & 1019 \\ & 1023 \\ & 033 \\ & 1044 \end{aligned}$	0.03645 0.03779 0.0.1. 104 0.04418	$\begin{aligned} & 4593 \times 10^{-5} \\ & 4.954 \times 10^{-5} \\ & 5.890 \times 10^{-5} \\ & 6.871 \times 10^{-8} \end{aligned}$	$\begin{aligned} & 2.504 \times 10^{-} \\ & 2.57 / \times 10^{-} \\ & 2.760 \times 10^{2} \\ & 2.934 \times 10 \end{aligned}$	$\begin{aligned} & 3.212 \times 10^{-5} \\ & 3.455 \times 10^{-0} \\ & 4.091 \times 10^{-5} \\ & 4.765 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 1.1014 \\ & 0.6992 \\ & 0.6974 \\ & 0.6996 \\ & 0.5935 \end{aligned}$
$\begin{aligned} & 400 \\ & 450 \\ & 500 \\ & 600 \end{aligned}$	$\begin{aligned} & 0.364 \\ & 0.5243 \\ & 0.4880 \\ & 0.4565 \\ & 0.4042 \end{aligned}$	$\begin{aligned} & 1090 \\ & 1069 \\ & 1081 \\ & 1093 \\ & 1115 \end{aligned}$	$\begin{aligned} & 0.44+21 \\ & 0.05015 \\ & 0.05298 \\ & 0.05572 \\ & 0.06093 \end{aligned}$	$\begin{aligned} & 8.95 \times 10^{-1} \\ & 1.004 \times 10^{-5} \\ & 1.117 \times 10^{-4} \\ & 1.352 \times 10^{-4} \end{aligned}$	$\begin{aligned} & 3101 \times 10 \\ & 3.261 \times 10^{-1} \\ & 3.415 \times 10^{5} \\ & 3.563 \times 10^{-5} \\ & 3.846 \times 10^{-5} \end{aligned}$	$\begin{aligned} & =415 \times 10^{-1} \\ & 6.219 \times 10^{-3} \\ & 6.997 \times 10^{-5} \\ & 7.806 \times 10^{-5} \\ & 9.515 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 0.095 \% \\ & 4.6948 \\ & 0.6965 \\ & 0.6986 \\ & 0.763 ? \end{aligned}$
$\begin{array}{r} 700 \\ 800 \\ 900 \\ 1000 \\ 1500 \\ 2000 \end{array}$	$\begin{aligned} & 0.3027 \\ & 0.3289 \\ & 0.3008 \\ & 0.2772 \\ & 0.1990 \\ & 41553 \end{aligned}$	$\begin{aligned} & 1135 \\ & 1153 \\ & 1169 \\ & 1184 \\ & 1234 \\ & 1264 \end{aligned}$	$\begin{aligned} & 0.05581 \\ & 0.07037 \\ & 0.07465 \\ & 0.07868 \\ & 0.09599 \\ & 0.11113 \end{aligned}$	$\begin{aligned} & 1.598 \times 10^{-4} \\ & 1.855 \times 10^{-4} \\ & 2.122 \times 10^{-4} \\ & 2.398 \times 10^{-4} \\ & 3.908 \times 10^{-4} \\ & 5.664 \times 10^{-4} \end{aligned}$	$\begin{aligned} & 4.111 \times 10^{-5} \\ & 4.362 \times 10^{-5} \\ & 4.600 \times 10^{-6} \\ & 4.826 \times 10^{-5} \\ & 5.817 \times 10^{-5} \\ & 6.630 \times 10^{-5} \end{aligned}$	$\begin{aligned} & 1.133 \times 10^{-4} \\ & 1.326 \times 10^{-4} \\ & 1.529 \times 10^{-4} \\ & 1.741 \times 10^{-4} \\ & 2.922 \times 10^{-4} \\ & 4.270 \times 10^{-4} \end{aligned}$	0.7092 0.7149 0.7206 0.7260 0.7478 0.7539

Note: For ideai gases, the properties $c_{p} \dot{\mu}_{r} \mu$, and Pr are independent of pressure. The properties $\rho_{\text {, }} v$ and α at a pressure $P($ in atm) other than 1 atra are deter mined by mutipiying the vaiues of ρ at the given temperature by P and ∂y dividing; and x by P.
Source: Data generated from tine EES software developed by S. A. Klein and F. L. Aivarado. Original sources: Keenan, Chao, Keyes, Gas Tabies, Wiley, 198; and Thermaphysical Propenties of hatiter, Voi. 3: Thermai Conductivity, Y. S. Touloukian. P. E. Liify S C. Saxena, Vol. Li: Viscosity, Y. S. Toulbukian, S. C. Saxena, and P. Hestermans, JFIIPlanum, NY, 1970, ISBiN D-306067020-8.
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester Examination December 2023

Program: T.Y .Mechanical Engineering
Course Code: MC- BTOO3
Course Name: Health Safety and Environment

Duration: 3 Hour
Maximum Points: 100
Semester: V

Notes: 1. Solve any Five main questions out of Seven main questions.
2. Draw neat schematic diagrams wherever is necessary, highlight important points.
3. Assume suitable data if necessary and mention it.

End Semester Examination December 2023

	ii) Obtain formulae for probability of accident scenarios				
Q5A	Give fundamental objectives of occupational health and safety?	10	1	1	1
Q5 B	What is integrity of system in OHS scenario? What is "Heinrich triangle"? Using neat block diagram show steps involved in safety function deployment?	10	1	2	2
Q6 A	Write short note on Fault tree analysis using following points; a) Event symbols, b) Gate symbols, c) different principal concepts to construct fault tree?	10	1	1	4
Q6 B	Explain using definition and with an example, what is hazard, accident and risk? Draw neat sketch of Peterson model of Accident Causation or any other model?	10	1	2	2
Q7 A	What is Pareto chart and explain its significance in relation to failure mode and effect analysis (FMEA)? Draw recommended worksheet for the Preliminary hazard analysis and FMEA?	10	1,2	1	3
Q7 B	Explain stepwise process or algorithm used for process related hazard analysis technique. If an fertilizer manufacturing unit uses two chemical's like ammonia and phosphoric acid, then apply hazard analysis at any one node using all possible guide words?	10	1	1	3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai -400058
Re Sem Examination Feb 2024

Course Name: Mechatronics
Notes:

1. Q. 1 is compulsory
2. Solve any Four out of Q. 2 to Q. 7
3. Assume suitable data wherever necessary

Q.No.	Questions	Points	CO	BL	Mod. No.
1 a	Enlist the different applications of Mechatronics in day to day life	05	I	3	I
1 b	Explain Meter in and Meter out circuit and differentiate the same	05	I	4	III
1 c	Draw and explain bottle filling plath with functional block diagram	05	IV	5	V
1 d	Discuss the Flag register of 8085 with suitable example	05	II	3	II
2a	Explain the term Clock signal, Interrupt signals, Control signals, Address and data bus in 8085	10	II	5	II
2 b	Discuss in detail the PSW and Internal RAM of 8051	10	II	3	II
3 a	Discuss the different applications of hydraulic and pneumatic and different components of hydraulic components	10	III	4	1 II
3 b	Explain term Transfer function and differentiate open loop and closed loop system	10	IV	5	III
4a	Develop and explain the working principle of Robotic Manipulator and sequencing circuit.	10	III	3	IV

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

Re Sem Examination Feb 2024

	Explain the block diagram reduction rule and reduce the block diagram to simple form and obtain transfer function of following diagram	10	IV	4	IV
5a	Solve the Routh-Herwith criteria $s^{3}+s^{2}+$ $s^{3}+s^{1}+4=0$ and Routh criteria $s^{5}+$ $2 s^{4}+3 s^{3}+6 s^{2}+2 s+1=0$	10	IV	3	VII
5b	A unity feedback system has $G(s)=$ $\frac{\mathrm{K}(s+2)}{s\left(s^{3}+7 s^{3}+12 s\right)}$, Determine i) Type of system, ii) all error coefficients and iii) Error for input $\frac{R}{2} t^{2}$	10	IV	4	VII
6b 6 a	Explain the term Time response analysis with suitable example and develop the derivation of steady state error.	10	IV	5	IV
6 b	Find the transfer function of the given network	10	III	5	IV
7a 7	Develop a ticket vending m / c for western railway using the mechatronics concept with suitable sketches.	10	II	5	VI
7b	Derive the steady state error and effect of change in input $R(s)$ and change in $G(s) H(S)$ on steady state error.	10	III	5	VI

Duration: Three Hour
Maximum Points :100

Notes

- Answer any FIVE from seven questions,
- Answers to all sub questions should be grouped together for evaluation,
- Make suitable assumption if needed with proper reasoning,
- Data shown under column CO and BL are only for academic evaluation (CO: Course Outcome, BL: Blooms Taxonomy,)

1. Explain you understanding about the following terms of a compressible flow.

Points CO BL
a) Mach number and classification of flow regimes based on it,
b) Bulk modulus, coefficient of volumetric expansion and compressibility,
c) Stagnation state and critical state,
d) Concept of maximum speed in compressible flow.
2. (A) Examine the characteristic features of compressible low and identify its basic equations? Write them in their mathematical form.
(B) Derive following expressions
[20] 14

$$
\frac{T_{0}}{T}=1+\left(\frac{\gamma-1}{2}\right) M^{2}
$$

What do you understand by this expression? Conclude an appropriate expression for pressure and density also.
f. (A) Differentiate between following.
[10] 1,2 4
i) Compressible and Incompressible,
ii) Subsonic and Supersonic,
iii) Critical state and stagnation state of fluid flow,
iv) Normal and oblique shock wave
(B) Derive following expression and explain the effect of flow area variation
[10] 3 on velocity and pressure of the flow for the sub sonic and supersonic flow.

$$
\frac{d V}{V}=-\frac{d A}{A} \frac{1}{\left[1-M^{2}\right]}
$$

4. (A) Derive an expression for maximum flow rate through a varying area duct.

Analyze and discuss the expression.
(B) Consider steady adiabatic flow of air through a long straight pipe with $\mathrm{A}=0.05 \mathrm{~m}^{2}$. At inlet section the air is at $200 \mathrm{kPa}(\mathrm{abs}), 60^{\circ} \mathrm{C}$ and $146 \mathrm{~m} / \mathrm{s}$. At a downstream location the air is $95.6 \mathrm{kPa}(\mathrm{abs})$, and $280 \mathrm{~m} / \mathrm{s}$. Determine p $\mathrm{p}_{01}, \mathrm{p}_{02}$, $\mathrm{T}_{01}, \mathrm{~T}_{02}$ and entropy change for the flow. (Using Gas table not permitted here)
5. (A) Draw a schematic diagram of a supersonic wind tunnel. Discuss the different components involved here. Analyse the problems associated to its design and fabrication.
(B) A normal shock wave exists in a $500 \mathrm{~m} / \mathrm{s}$ stream of Nitrogen with a static temperature of $-40^{\circ} \mathrm{C}$ and static pressure of 70 kPa . Calculate the Mach number, pressure and temperature downstream of the wave and entropy increase across the wave. For nitrogen, $y=1.4, \mathrm{R}=297 \mathrm{~J} / \mathrm{kg}$.K. (Use Gas Table)
6. (A) Discuss Rayleigh Flow. List down all governing equation required to characterize this flow. Represent it on a Ts diagram and explain its unique feature.
(B) A long pipe of 25.4 mm diameter has a mean coefficient of friction of
0.003 . Air enters the pipe at a Mach number of 2.5 , stagnation temperature

310 K and static pressure 0.507 bar. Determine for a section at which the Mach number reaches 1.2 (Use Gas Table),
(a) static pressure and temperature
(b) stagnation pressure and temperature
(c) velocity of air
(d) distance of section from the inlet, and
(e) mass flow rate of the air
7. (A) What is Fanno flow? Sketch Fanno line on an appropriate property diagram and explain it. Discuss the effect of Fanno flow on following properties: Pressure, temperature, density, enthalpy and velocity of flow.
B) A combustion chamber in a gas turbine plant receives air at $350 \mathrm{~K}, 0.55$ bar
and $75 \mathrm{~m} / \mathrm{s}$. The air/fuel ratio is 29 and the calorific value of the fuel is 41.87 $\mathrm{MJ} / \mathrm{kg}$. Taking $\gamma=1.4$, and $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ for the gas determine:
(a) the initial and final Mach numbers
(b) final pressure, temperature and velocity of the gas,
(c) \% stagnation pressure loss in the combustion chamber, and
(d) the maximum stagnation temperature attainable.
(Use Gas Table),

RE-EXAMINATION, FEBRUARY 2024
B.Tech. (Mechanical Engneeryng) Semester-V

Course: COMPRESSIBLE FLUID FLOW (PE BTM 554)

Duration: Three Hour
Maximum Points :100

Notes

- Answer any FIVE from seven questions,
- Answers to all sub questions should be grouped together for evaluation,
- Make suitable assumption if needed with proper reasoning,
- Data shown under column CO and BL are only for academic evaluation (CO: Course Outcome, BL: Blooms Taxonomy,)

1. Distinguish between the following terms.

Points	CO	BL
$[20]$	1	4

a) Incompressible and Compressible flow,
b) Subsonic, sonic and supersonic flow conditions,
c) Stagnation state and critical state,
d) Chocked flow and non-chocked flow.
2. (A) Derive an expression for the velocity of sound. Write the mathematical form of all basic governing equations of a compressible flow.
(B) Derive an expression for maximum flow rate through a varying area duct.

Analyze and discuss the expression.
3. (A) Derive following expression for a variable area flow.

$$
\frac{A}{A^{*}}=\frac{1}{M}\left[\frac{1+\frac{k-1}{2} M^{2}}{\frac{k+1}{2}}\right]^{(k+1) / 2(k-1)}
$$

(B) Consider steady, adiabatic flow of air through a long straight pipe with $A=0.05$
m^{2}. At the inlet (section 1) the air is at 200 kPa (abs), 60 C , and $146 \mathrm{~m} / \mathrm{s}$.
Downstream at section 2 , the air is at 95.6 kPa (abs) and $280 \mathrm{~m} / \mathrm{s}$. Determine po1, $\mathrm{p}_{02}, \mathrm{~T}_{01}, \mathrm{~T}_{02}$, and the entropy change for the flow.
4. (A) What do you understand by the following expression? Derive it.

$$
\frac{T_{0}}{T}=1+\left(\frac{\gamma-1}{2}\right) M^{2}
$$

Conclude an appropriate expression for pressure and density also.
(B) A supersonic diffuser decelerates air isentropically from a Mach number of 3 to a
$\begin{array}{lll}{[10]} & 2,3 & 3,4\end{array}$ Mach number of 1.4. If static pressure at diffuser inlet is $30 \mathrm{kPa}(\mathrm{abs})$, calculate static pressure rise in the diffuser and the ratio of inlet to outlet area of the diffuser. (Using Gas table not permitted here)
5. (A) What are the important characteristics of a supersonic wind tunnel? What are its
(B) A normal shock occurs in the divergent section of a CD nozzle. The upstream mach number is 1.8 , pressure is 0.5 bar and drea ratlo $\left(A_{e} / A^{+}\right)$of diver gent section 19 3. Calculate the mach number, static and stagnation pressure at the exit of the nozzle assuming isentropic flow after the shock. (Use Gas Table)
6. (A) What do you understand by a Fanno flow? Sketch Fanno line on an appropriate property diagram and explain it.
(B) Consider a pipe of diameter 50 mm with wall friction factor 0.008 . Air at stagnation pressure and temperature 10 bar and 400 K respectively is supplied to the pipe at Mach number 3. Exit Mach number is 1 . Determine the mass flow are and the length of the pipe. (Use Gas Table),
7. (A) Discuss Rayleigh Flow. List down all governing equation required to characterize this flow. Represent it on a Ts diagram and explain its unique feature.
B) The Mach number at the exit of a combustion chamber is 0.9 . the ratio of stagnation temperature at the exit and entry is 3.74 . The pressure and temperature of the gas of exit are 2.5 bar and $1000^{\circ} \mathrm{C}$ respectively, determine (a) M, P, T of the gas at the entry, (b) heat supplied per kg of the gas and (c) the maximum heat that can be supplied. (Use Gas Table),
$\left[\begin{array}{lll}{[10]} & 2,3 & 3,4\end{array}\right.$
$\begin{array}{lll}{[10]} & 1,3 & 2,4\end{array}$
$3,4 \quad 3,4$
$[10] \quad 1,2 \quad 1,2$
$\begin{array}{lll}{[10]} & 3,4 & 3,4\end{array}$

Re-EXAMINATIONS Feb 2024

Program
Course Code

1. Question No. 1 is compulsory
2. Solve any four out of remaining six.
3. Answers to each sub-questions must be grouped together
4. Use of scientific calculator is allowed
5. Begin answer to each question on new page.
6. Keep some margin on left side of answer paper
7. Candidates should write the answer legibly

$\begin{aligned} & \mathrm{Q} . \\ & \text { no. } \end{aligned}$	Description	$\begin{aligned} & \text { Poin } \\ & \text { ts } \end{aligned}$	CO	BL
1	Answer the following: a) List six steps involved in FEM procedure. Explain any two in detail. b) Explain with suitable example, how the use of natural coordinates assures displacement compatibility in FEA? c) Explain how natural B.C.'s are explicitly taken care in weak formulation and only geometric B.C.'s are to be satisfied by governing equation. d) What are the mesh revision methods? Discuss.	5×4	$\begin{array}{\|l\|} \hline 1,2 \\ 1,3 \end{array}$	2,3
2	a) Evaluate the shape function, B matrix and stiffness matrix for the elements shown in Figure. The coordinates are given in units of millimeters. Assume plane stress conditions. Let $\mathrm{E}=210 \mathrm{GPa}, \mathrm{v}=0.25$, and $\mathrm{t}=10 \mathrm{~mm}$.	20	1,2	3,4
3	a) Obtain the consistance nodal load vector for a fixed beam with the point load ' P ' is at $2 / 3$ of its span ' L ' from the left support. b) Obtain the Jacobian value for quadratic bar element, if mid-side node is located at $L / 4$ from the first node. (Where L is length of element.) c) Explain Gauss quadrature numerical integration method	7 7 6	1,2	1,2

4 For the quadrilateral element shown in Figure, determine:
a) Equivalent nodal forces, if the load of 10 kN in the directions of 45 degrees with horizontal is applied at $P(3,4)$.
(1,7)

$(2,1) 1$

The pin-fin used for heat dissipation, has 50 mm long and circular c / s area of $100 \pi \mathrm{~mm}^{2}$. At one end of fin temperature is $300^{\circ} \mathrm{C}$. (take $k=$ 100 watt $/ \mathrm{cm}{ }^{\circ} \mathrm{C}, h=10 \mathrm{watt} / \mathrm{cm}^{2}{ }^{\circ} \mathrm{C}$, surrounding temperature $30^{\circ} \mathrm{C}$, use 2 linear elements, don't neglect convection from free end). Find:
a) Conductive and convective matrix for each element
b) Final assembled matrix
c) Thermal load vector
d) Temperature at various nodes.
11. Obtain Jacobian matrix for element shown in Question number 4

6 a) Evaluate $\iint\left(3 y^{2}+2 x\right) d x d y$ using 2×2 gauss quadrature, take limits of integration as 0 to 2 for both x and y.
b) A taper bar having $50 \mathrm{~mm}^{2}$ and $20 \mathrm{~mm}^{2}$ as cross-sectional area at fixed end and free end respectively, is subjected to point load of 10 kN at a distance of $1 / 3$ of total length from fixed end and 5 kN at free end. Take total length of taper bar as 1.5 m and $\mathrm{E}=200 \mathrm{GPa}$. Find the displacement at the point of application of loads and stress in each element.(discretize bar in 3 1D element)
7 a) Derive expression of stiffness matrix for arbitrary oriented bar element. (truss element)
b) Derive the expression of shape functions for nine-noded quadrilateral element.

$$
\begin{array}{ll}
N_{4}=\frac{1}{L^{3}}\left(2 x^{3}-3 x^{2} L+L^{3}\right) & N_{2}=\frac{1}{L^{3}}\left(x^{3} L-2 x^{2} L^{2}+x L^{3}\right) \\
N_{3}=\frac{1}{L^{3}}\left(-2 x^{3}+3 x^{2} L\right) & N_{4}=\frac{1}{L^{3}}\left(x^{3} L-x^{2} L^{2}\right)
\end{array}
$$

$N_{1}=1-\frac{3 x}{l}+\frac{2 x^{2}}{l^{2}}, \quad N_{2}=\frac{-x}{l}+\frac{2 x^{2}}{l^{2}}, \quad N_{3}=\frac{4 x}{l}-\frac{4 x^{2}}{l^{2}}$

8	1,2	3,4
12		

$$
\frac{E I}{L^{3}}\left[\begin{array}{cccc}
12 & 6 L & -12 & 6 L \\
6 L & 4 L^{2} & -6 L & 2 L^{2} \\
-12 & -6 L & 12 & -6 L \\
6 L & 2 L^{2} & -6 L & 4 L^{2}
\end{array}\right]
$$

$$
[D]=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]
$$

END-SEM-EXAMINATIONS December 2023

Program	$:$ BTech Mechanical engr	Duration $: 3 \mathrm{hr}$
Course Code	$:$ PE-BTM511	Maximum Points $: 100$

Course Name :Finite Element Methods for Mechanical Engineers.
Semester
:V
Instruction : Refer below

1. Question No. 1 is compulsory
2. Solve any four out of remaining six.
3. Answers to each sub-questions must be grouped together
4. Use of scientific calculator is allowed
5. Begin answer to each question on new page.
6. Keep some margin on left side of answer paper
7. Candidates should write the answer legibly

SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai)
END SEM EXAMINATION JAN 2024
Total Points: 100
CLASS/SEM: Third Year Mech. Engg, SemV
Duration: 3 Hour
Subject: LGM, Course Code PE-BTM534
Que is compulsory.
Solve any 4 questions from remaining. Figures to the right indicate full marks. Assume any suitable data if necessary.

BHARATIYA VIDYA BHAVAN'S
SARDAR PATEL COLLEGE OF ENGINEERING (A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.

END SEMESTER DECEMBER 2023 EXAMINATION

Maximum Marks: 100
Class: T.Y. B. Tech. (Mechanical) Program: B. Tech. (Mechanical Engineering)
Name of the Course: Hydraulic Machinery

Duration: 3 Hrs
Semester: \mathbf{V}

Course Code: PE-BTM552

Instructions:

1. Question number 1 is compulsory.
2. Solve any 4 questions from remaining questions (Question number 2 to 7)
3. Draw neat diagrams wherever necessary.
4. Assume suitable data if necessary.

